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ABSTRACT

Let d be a derivation of an associative ring R, and let M be a left R-module
with d-derivation D of finite index. It is shown that M satisfies any of a class of
conditions (including ACC, DCC, uniform, Gabriel, Krull dimension) if and
only if it satisfies the same condition with respect to D-invariant submodules. If
in addition 1/w!€ R, where w denotes the index of d, then D-simple
R-modules are completely reducible. Relationships between the Jacobson and
the D-invariant Jacobson radicals of M are investigated.

0. Introduction

Let R be an associative ring with unity and let d: R — R be a derivation of R,
i.e., d(a+b)=d(a)+d(b) and d(ab)=d(a)b+ ad(b) for all a,b E R. A left
ideal I of R is a d-ideal provided d(I)C I. We say that R is d-Noetherian if
every ascending chain of left d-ideals of R stabilizes. The aim of this paper is to
study relations between some properties of R and their d-counterparts. It
appears that, although generally one can not expect too much, for enough good
derivations the relations are rather close. Many of the proofs need information
about factors R/I, where I is a left d-ideal of R. The mapping d: R/I— R/I,
induced by d, satisfies for every r € R, m € R/I, d(rm)=d(r)m + rd(m). More
generally, an endomorphism D of the additive group of a left R-module M is
said to be d-derivation of M if D(rm)=d(r)m +rD(m) for every rER,
m € M. A submodule N of M is a D-submodule provided D(N)C N. Most of
the results of this paper concern R-modules with d-derivations. We also need
some auxiliary results on partially ordered sets. It is not surprising because the
properties studied and their D-counterparts can be expressed as properties of
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the lattice L (M) of submodules of M and the lattice L, (M) of D-submodules of
M.

1. Preliminaries

In this section we state some properties of a left R-module M with
d-derivation D. Extending the product rule in the definition of D we obtain the
Leibniz formula:

(L.1) D"(rm)=§0 (;‘) 4" (nD' (m).

Let N be a D-submodule of M. Putting, D(m + N)=D(m)+ N we obtain a
d-derivation on M/N which is said to be induced by D. For every submodule N
of M let

N*=Y D/(N) (N* =N D"(N)) , where D' (N)={xeM | D’(x)E N}.
j=0 =0

Clearly N* (N,) is the smallest (largest) D-submodule of M containing N

(contained in N).

1.2. LemMA. For every submodule N of M, the R-modules N + D(N)/N and
N/NND7'(N) are isomorphicc In particular L(N+ D(N)/N)=
L(N/NN D (N)).

ProoOF. It is easy to see that the map f: N— N + D(N)/N given by f(n)=
D(n)+ N is an epimorphism of R-modules and ker f = N N D™'(N).

The following proposition is straightforward.

1.3. ProposITION. Given an integer v=1 the following conditions are
equivalent:

(i) for every m € M, D*(m)E X, RD'(m);

(ii) for every submodule N of M, N* =Z%!2) D'(N);

(iii) for every submodule N of M, N, = [\;_, D7I(N).

1.4. DerFINITION.  We say that the d-derivation D has finite index if there
exists an integer v = 1 satisfying Proposition 1.3. The index of D is defined as the
smallest number v from 1.3.

Throughout the paper D denotes a d-derivation of M of finite index,
generally denoted by v. If (X, =) is a partially ordered set, then the interval
{x € X|a =<x=b}is written [a, b]x or [a, b] if the context is clear.
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Let b,B: L(M)—>L(M) be defined by b(N)=NND™'(N), B(N)=
N+ D(N). Clearly b and B have the following properties:

1.5. For every submodule N of M

(i) b(N)CNCB(N), Bb(N)C N CbB(N);
(i) [b(N),N]=[N, B(N)];

(iii) N, =b""'(N), N*=B""'(N).

1.6. If in addition N, =0, then
MDNDbB(N)DbH*(N)D---2b"'(N)=0
and for every j=1,2,...,v -1
[b°(N), b''(N)] = [b/~'(N), B (N)] C [ (N), b ()],
where b°(N)= N and b™'(N)= B(N).

Now we will prove a result analogous to Lemma 1.3 of [1].

1.7. LemMA. There exists a submodule N of M maximal with respect to
N, =0.

Proor. By Zorn’s lemma it suffices to show that if {N, | a € A} is a chain of
submodules of M such that (N,), =0 for all « €A, then (UN,), =0. If
(UN,), #0 then 0#(Rm)*=3')RD'(m)CUN, for some meUN,.
Since D'(m)e€UN,, one has D’(m)E N,, for some a(j)E A. Choosing
B = max a(j), we obtain that 0 #(Rm)* C N,, a contradiction to (Nz), =0.

2. Some results on partially ordered sets

In this section we prove some general results about partially ordered sets. We
will use them for examining the relation between the uniform dimension and the
D-uniform dimension of factors of a module M,

Let X be a class of partially ordered sets with 0 and 1, which is closed with
respect to isomorphisms (of partially ordered sets). Moreover we assume that if
X € ¥, then forevery x, y € X with x =y, [x, y] € &. Now let () be a property of
partially ordered sets. If a partially ordered set (X, =) has property (), then we
write X € ().

2.1. DeriNtTION.  The property ) is said to be upper hereditary on % if Q
satisfies the following three conditions:
@ if X=Y and XEQ, then YEQ;
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(i) f x,y,zEXEK (x=y=2z)and [x,y]EQ then [x,z]EQ;
(i) if X €Q then for every x-€ X [0,x]EQ or [x,1]€ 4.

2.2, ExampLE. Let A be the class of all modular lattices with 0 and 1. The
following properties are upper hereditary on :

(a) L €Qif and only if L is not Noetherian (L is not Artinian, L has infinite
length).

{(b) L € if and only if u.dim L =, where u.dim L denotes the uniform
dimension of L. (For the basic properties of the uniform dimension of modular
lattices we refer to [5].)

2.3. PrOPOSITION. Let ) be an upper hereditary property on the class X and let
X € K. Suppose that there exist order preserving maps b, B: X — X such that for
every x € X

(1) b(x)=x=B(x) and Bb(x)=x = bB(x),

(i) {b(x), x]=[x, B(x)].

If for some x, € X, [xo, 1] € Q, then for every integer k = 0 there exists an element
x € X such that [b*(x),11€Q or [B*(x),1]€.

The proof of this proposition requires some preliminary lemmas.
2.4. LemMA. If k=1=0, then b'B'b* = b* and B'b'B* = B*.

Proor. Let x € X Since b and B are order preserving maps and for every
y € X, Bb(y)=y = bB(y), we obtain

b'B'b*(x)=b'"(bB(B''b*(x))) = b''B''b* (x) = - - - = b*(x).
On the other hand
b'B'b*(x) = b'B'"(Bb(b*"'(x))) = b'B" b ' (x)=- - - = b'D " (x) = b* ().
Hence b'B'b* = b*. The proof of the second equality is analogous.

25. LemMA. Forevery z€Xand 1=m<n, if [b"B"(z),b" 'B"(2)]€Q
then [b™"'B"(z), b"B"(z)] QL.
Proor. The proof is by induction on n Let n=2 and let
[bB*(z), B’ (z)] € Q. By 2.4 we have
[bB*(2), B*(z)] = [bB*(z), BbB*(z)} =~ [b’B*(z), bB*(2)),

so [b’B*(z), bB*(z)] € Q.
Suppose that the lemma is true for all j<n Now, let m<n and let
[p™B"(z),b™'B"(2)] € Q). Consider the chain
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b"B"(z)=Bb"B"(z)=B’b"B"(z)=---=B"b"B"(z) = B"(2).

Since b™'B"(z)=B"(z), by upper hereditary, we obtain that

[b™B"(z), B"(z)] €. Hence for some j<m<n

(*) [B'b™B"(z),B""'b"B"(z)] €Q.

Choose j minimal satisfying (*). We claim that j =1. Indeed, if j =2 then
O3[Bb"B"(z), B*'b"B"(z)] = [bB'b"B"(z), B'’b™B"(2)).

Hence for w = b™B"(z), [bB’(w), B'(w)] € Q. The induction assumption gives
Q3[b'B(w), b 'B(w)]=[b'B’b"B"(z),b’'B'b"B"(2)).

Since b'Bb™"=b" and b'Bb"B"(z)=B'b"B"(z), we have

[b™B"(z), B'’b™B"(z)] € ). This contradicts minimality of j and proves the
claim. Hence 0=j =1. Let us observe that

[Bb™B"(z), B*b™B"(z)] ~ [bBb™B"(2), Bb"B" ()]
=[b"B"(2), Bb™B"(2)} =[b™"B"(2), b"B"(2)).
Therefore j =0 and [b™*'B"(z),b"B"(z)] € Q.

PRrOOF OF ProOPOSITION 2.3. We proceed by induction, the case k =0 being
true from the assumption. Now let k=0. We have two possibilities:
[b*(x),11€Q or [B“(x),1]€Q. The second case reduces to the first one.
Indeed, if [B*(x),1]€Q then [B*(x), B*"'(x)]€Q or [B*"'(x),1]€Q. We
have [B*(x), B*"'(x)] =[bB*(x), B*(x)], so if [B*(x),B*"'(x)]€Q then by
Lemma 2.5 [b*B*(x), b* 'B*(x)] € Q and by upper hereditary [b*(z),1]€Q,
for z = B*(x).

Now let [b*(x),1] € Q. Consider the chain

b*(x)= Bb*(x)=---=B*p*(x)=B*"'b*(x)=---=1.

If [B*"'b*(x),1] € Q then [B**!(z), 1] € N for z = b*(x). Hence we may assume
that [B*"'b*(x), 1] € Q, so that [b*(x), B*"'b*(x)] € Q. By upper hereditary
there is j = k minimal with respect to [B’b*(x), B'*'b*(x)] € Q. We claim that
i =1. Indeed, if j =2 then

Q3[Bb*(x), B'*'b*(x)] = [bB'b* (x), B'b* (x)],

so by Lemmas 2.5 and 2.4 Q3 [b'B'b*(x), b’ ' B'b* (x)] = [b*(x), b’ ' B'b*(x)].
Applying the same argument as in the proof of Lemma 2.5 we obtain a
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contradiction with minimality of j. Therefore 0=j =1 and [b**'(x), 1] € Q. This
ends the proof.

As an immediate consequence of Proposition 2.3 and Example 2.2(b) we
obtain the following

2.6. CorOLLARY. Let X be a modular lattice’with 0, 1 and let Y be its subset. If
there exist order preserving maps b, B: X — X and an integer n = 1 such that for
every x € X

(i) b(x)=x=B(x) and Bb(x)=x = bB(x),

(i) [b(x),x]=~[x, B(x)],

(iii) b"(x)E Y and B"(x)E Y,
then for every x € X u.dim(x,1] <« if and only if u.dim[y,1]<o for every
yey.

3. Chain conditions and dimensions

In this section we study relations between chain conditions and dimensions of
M and their D-counterparts. By D-I(M) (D-u.dim(M), D-Gdim(M), D-
K dim(M)) we denote the length (uniform, Gabriel, Krull dimensions, respec-
tively) of M with respect to D-submodules.

The statements (b) and (c) of the following theorem are related respectively to
Theorem 2.1 of [2] and Lemma 1.4 of [1] and they will be proved in almost the
same way.

3.1. TueoREM. Let M be a left R-module with a d-derivation D of finite index
v. Then

(a) D-IM)=lM)=v-D-I(M),

(b) M is Noetherian if and only if M is D-Noetherian

(¢) D-u.dim(M)=u.dim(M)= v - D-u.dim(M);

(d) for every submodule N of M u.dim M/N < if and only if for every
D-submodule K of M D-u.dimM/K <, where D is an induced by D
d-derivation on M/K;

(e) M is Artinian if and only if M is D-Artinian.

Proor. (a) Clearly it suffices to consider the case when M is D-simple. By
1.7 we can take a submodule N of M, maximal with respect to N, =0. Since M
has no proper D-submodules, M/N is a simple module. By 1.6, for every
j=0,1,...,v—1, the module b'(N)/b’*'(N) is simple or it is equal to zero.
Hence [(M)= 0.

(b) Suppose that M is D-Noetherian. Using Noetherian induction we can
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assume that for every non-zero D-submodule X of M the module M/X is
Noetherian. Now let N be a submodule of M maximal with respect to N, =0.
Let NC X, € X,C - C M be an ascending chain of submodules of M. Since
Ng X,, 0# (X)), C X,. By our assumption M/(X}), is Noetherian, so the chain
X, C X, C - - - terminates. Therefore the module M/N is Noetherian and by 1.6
so is the module M.

The converse is clear.

(c) Let D-u.dim(M) =k <x, By 1.6 it suffices to show that u.dim(M/N) =
k, where N is a submodule of M maximal with respect to N,=0. Let
N, N,,..., N, be submodules of N strictly containing N whose sum is direct
modulo N. Clearly for every j=1,2,...,m (N;), #0 and

(). 0 3 (M), SN 0 (T N). =N, =0

Therefore m = k.

(d) It is an immediate consequence of 2.6 and 3.1(c).

(e¢) Assume that M is D-Artinian. We claim that for every submodule X
of M there exists a submodule Y of M minimal over X. Obviously there
exists a D-submodule K of M minimal over X, as a D-submodule. Clearly
D-I(K/X,)=1, where D is the induced by D d-derivation of K/X,. Since
X,CKNX and 0#K/KNX=K+X/X, by 3.1(a), we obtain that
I(K + X/X) = v. This proves the claim.

Now it is easy to see that for submodules X CZ of M there exists a
submodule Y C Z minimal over X

The above remarks and 3.1(d) imply that for every submodule X of M the
socle Soc(M/X) is a finite direct sum of simple submodules of M/X and that
Soc(M/X) is an essential submodule of M/X.

Now let M; D M, D -- be a descending chain of submodules of M and let
X =,_, M,. Since Soc(M/X) is essential in M/X and it has finite length, the
chain terminates.

Now we will examine the relationship between Gabriel, Gdim(M), and
D-Gabriel, D-Gdim(M), dimensions of M. For the definitions and the basic
properties of this dimension we refer to [6].

3.2. THEOREM. Gdim(M) = D-Gdim(M) if either side exists.

ProoF. We prove separately
(a) if D-Gdim(M)=a then Gdim(M) = a;
(b) if Gdim(M) = a then D-Gdim(M) = a.
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Suppose that (a) does not hold. Let a be the smallest ordinal number
such that for some module M, D-Gdim(M)=«a and Gdim(M)Z a. Let T =
S{N C M |Gdim(N)= a}. Clearly Gdim(T) < a and by 1.2, T = T*. Hence we
can assume that T = (. Obviously we can assume that M is a-D-simple. Let N
be a submodule of M maximal with respect to N, =0. For every submodule X
strictly containing N we have D-Gdim M/X, < a. Now minimality of a gives
Gdim(M/X)= Gdim(M/X,) < a. Therefore Gdim(M/N)=a and, by 1.6,
G dim(M) = «, a contradiction.

Now we prove (b). The proof is by induction on «. Let T be the largest
D-submodule of M such that D-G dim(7T) = a. We claim that T = M. If not, we
may assume that T =0 and M # 0. In this case, by the induction assumption and
by 1.2, M contains no non-zero submodules X with G dim(X) < a. Now since
G dim(M) = a, there exists an a-simple submodule N.

Let us define the relation ~ (~p) on the lattice L(M) (L, (M)) putting X ~ Y
(X ~p Y) if and only if

Gdim(X+Y/XNY)<a (D-Gdm(X+Y/XNY)<a).

It is easy to check that ~ and ~, are congruence relations on L(M) and L, (M)
respectively. Now if X and Y are D-submodules of M, and Gdim(X + Y/X N
Y)<a then by the induction assumption D-Gdim(X + Y/X N Y)< a. This
shows that the restriction of ~ to L, (M) is equal to ~5. Hence L, (M)/ ~p can
be treated as a sublattice of L(M)/~. Obviously the congruence class [N]
containing N is an atom in the quotient lattice L(M)/~. As an immediate
consequence of 1.2 we obtain that the interval [[0], [N*]].m,- has a finite length.
Hence also the interval [[0],[N*]}.omy-», has a finite length. Therefore
Ly (M)/~p contains an atom {K]. This implies that for every non-zero D-
submodule X of K, D-Gdim(X)<a or D-Gdim(K/X)< a. Since T =0,
D-G dim(X) Z a. This implies that K is a-D-simple, so D-G dim(K) = a. Using
again the assumption that T =0 we obtain a contradiction.
The proof of Theorem is complete.

Now we can prove the result on Krull dimension corresponding to 3.2. It
generalizes 3.1(e). We use Gordon and Robson’s result [3], which asserts that a
module has Krull dimension if and only if it has Gabriel dimension and all its
factors have finite uniform dimension.

3.3. TueoreMm. Kdim(M)= D-Kdim(M) if either side exists.
Proor. Clearly it suffices to show that if D-Kdim(M) = « then Kdim(M) =
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a. The quoted Gordon-Robson’s result, 3.1(d) and 3.2 prove that Kdim(M)
exists. By Corollary 4.2 of [4], M contains a largest submodule T with
Kdim(T) = a. Using 1.2 we obtain that T = T*. Now passing if necessary to the
factor module M/T we can assume that T = 0. Using the induction, we can also
assume that M is a-D-critical. Now let N be a submodule of M maximal with
respect to N, =0. If X2 N, then X, #0 and by the induction assumption
Kdim(M/X)=Kdim(M/X,)< a. Hence Kdim(M/N)= a. Applying 1.6 we
obtain that Kdim(M) = a, a contradiction. Therefore T = M and the proof is
complete.

We close this section with some remarks concerning radicals. Recall that the
Jacobson radical J(M) of a module M is equal to the intersection of all maximal
submodules. We define D-Jacobson radical J°(M) of a module M with a
d-derivation D as the intersection of all maximal D-submodules. As a conse-
quence of 3.1(a) we obtain the following

3.4. CorROLLARY. If the d-derivation D has index v, then J(RY ™ - J(M)C
JP(M).

Proor. Let N be a maximal D-submodule of M. Obviously D-I(M/N) =1
and by 3.1(a) there exists a chain

M=M)DM|D"'DMH=N

of submodules of M such that all factors M, /M,., are simple modules and n = v.
Now a simple induction on j = n gives.that J(RY ™' - J(M)C M,. In particular
JRY - JIM)CJR)'JM)CM,=N. Consequently J(R)""-J(M)C
J°(M).

The following example shows that in general the exponent v — 1 in 3.4 cannot
be improved.

3.5. ExaMpLE. Let T = Z,|x] be the polynomial ring in the indeterminate x
over the field Z,, and let I = (x) denote its augumentation ideal. The derivation
on T defined by setting d(x)=1 maps the ideal I” into itself; so d induces
derivation d on T = T/I”. Obviously d has index p, J*(T)=0and J(T) = I/I".

4. Clifford type relations

The aim of this final section is, among other things, to study D-simple
modules.
We begin with two elementary lemmas.
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4.1. LEMMA. Let D be a derivation on a left R-module M. If for some r € R
andmeM,0=rm =rD(m)=---=rD*"'(m) thend*'(r)ym=---=d(r)m =
rm =0 and rD*(m)=(-1)*d“(r)m.

ProOF. We prove by induction on s that
(*) d*(r)D'(m)=0 for0=s+I1=<k-1.

The case s =0 is clear. Now let 0=s<k—1 and let s+[+1=k —1. The
induction assumption gives that d*(r)D'(m)=d*(r)D'*'(m)=0. Hence

0= D(d*(r)D'(m))=d**'(r)D'(m).

This proves (*). In particular (*) implies that d*”'(r)ym =+ - =d(r)m =rm =0.
Moreover it gives that for every s =0,1,...,k ~1,

0= D(d*(r)D**"'(m))=d**'(r)D***"(m)+ d*(r)D"** (m).
Therefore rD*(m)= —d(r)D*'(m)="---=(—-1)*d*(r)m.

")

42. LEMMA. det V, =n+1, where

12 -

Proor. Consider the n X n matrix

2100 - 0
1210 0
W,={0121 - 0|eM@.
0000 - 2

It is clear that the determinant is invariant under elementary operations, i.e.,
operations which add to a row of a matrix a linear combination of its rows. By
induction on n we prove that using elementary operations we can pass from V,
to W,. Itis clear for n = 1. Now let n > 1. By induction we can pass from V, to
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(n+1) (n+1) (n+l)
1 2 n

i
‘&’L== 0 VVZ—l

0
If w; denotes the j-th row of W, then it is easy to check that

(2,1,0,...,0)+("1_1) w2+("2_1> w3+---+(::}) Wa = Wi,

and hence we can pass from V, to W,.
Therefore det V, =det W, =2det W,_, —det W, _,. Since det W, =2 and
det W, =3, we obtain that det V, = n +1.

4.3. PROPOSITION.  Suppose that d is a derivation on R of finite index w and
that w! is invertible in R. Then for every left R-module M with d-derivation D and
every essential submodule N of M, the submodule b(N)= N N D™ (N) is also
essential in M.

Proor. Suppose that b(N) is not essential. Using essentiality of N we can
choose x €N such that b(N)NRx =0 and r ER with 0#rS C N, where
S ={x,D(x),..., D" (x)}.

Let k (0= k = w) be minimal with respect to rD*(x)#0. We claim that
0< k <w. Indeed, if rx#0 then rD(x)EN and D(rx)=d(r)x + rD(x)E N.
Hence rx € b(N)N Rx =0, a contradiction. On the other hand if k = w then, by
41 and 1.3, rD"(x)=(—1)"d"(r)x €5 Rd’'(r)x =0 which is impossible.
Thus 0< k <w and

O0=rx=rD(x)="-+=rD*"'(x).

By Leibniz formuila 1.1 we obtain
k+1 k+1 . k +1 k+1-i i k+1
0=D""'(rx)=d*"'(r)x + 2, ; )d ‘(r)D¥(x)+ rD**'(x).

i=1

Moreover for s =2,..., k we have
s—1

0= Ds(r k—s+l(x))= 2 (f) ds—i(r)Dk—s+1+i(x)+ r k+1(x).

i=0

Now putting x; = d**'“(r)D'(x) (j =1,..., k) we obtain

k k —
(k;1>x,eN and Z(kj_sjl)x,eN, fors=1,...,k—1.
j=1 j=s
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By 4.2 det V, =k +1=w is invertible in R. Hence for j=1,...,k, x, EN
and in  particular  d*(r)D(x)EN. We have D(d*(r)x)=
d**'(r)x + d*(r)D(x) € N and, by 4.1, 0 # d*(r)x € b(N) N Rx. This contradic-
tion ends the proof.

The above result clarifies the following

4.4. CorOLLARY. Under the assumption on d of 4.3 we have

(a) for every essential left ideal I of R, the left ideal I, is also essential;

(b) for every left R-module M with d-derivation D of finite index and each
essential submodule N of M, N is also an essential submodule of M.

As a final result we prove the following

4.5. THEOREM. Let d be a derivation on R of finite index w with w! invertible
in R and let D be a d-derivation of finite index v on a left R-module M.

(@) If M is D-simple, then M is a completely reducible module of length
IM)=sv

(b) J(M)CJ®(M).

(c) If the ring R has no proper d-invariant left ideals then R is a simple Artinian
ring. If in addition R is a commutative ring then R must be a field.

Proor. (a) It is an immediate consequence of 4.4(b) and 3.1(a).

(b) It follows from 4.5(a).

(c) By (a) and (b) R is a semisimple Artinian ring. Hence, it suffices to show
that R is a simple ring. Suppose that I is a non-zero ideal of R. Then there exists
a central idempotent e €I such that I =Ie. Obviously d(I)=d(le)=
d(I)e + Id(e)C I Therefore I = R and R is a simple ring.

The following example points out differences between properties of J(R) and
J*(R).

4.6. ExaMpLE. Let R = M,(Q) be the full 2 X 2 matrix ring over the field of
rational numbers, and let d, be the inner derivation on R determined by the

a=fo o)

Clearly d) =0, so d, has index =3. It is easy to see that

- 5)

matrix

x,yEO}
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is the unique proper left d,-ideal of R. Therefore I=J%(R)# J(R)=0.
Moreover I’ = I.
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