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ABSTRACT 

Let d be a derivation of an associative ring R, and let M be a left R-module 
with d-derivation D of finite index. It is shown that M satisfies any of a class of 
conditions (including ACC, DCC, uniform, Gabriel, Krull dimension) if and 
only if it satisfies the same condition with respect to D-invariant submodules. If 
in addition 1/w!ER, where w denotes the index of d, then D-simple 
R-modules are completely reducible. Relationships between the Jacobson and 
the D-invariant Jacobson radicals of M are investigated. 

O. Introduction 

Let R be an associative ring with unity and let d: R ---> R be a derivation of R, 

i.e., d(a + b) = d(a)+ d(b) and d(ab) = d(a)b + ad(b) for all a, b E R. A left 

ideal I of R is a d-ideal provided d(I)C I. We say that R is d-Noetherian if 

every ascending chain of left d-ideals of R stabilizes. The aim of this paper is to 

study relations between some properties of R and their d-counterparts. It 

appears that, although generally one can not expect too much, for enough good 

derivations the relations are rather close. Many of the proofs need information 

about factors R/I, where ! is a left d-ideal of R. The mapping d: R/I---~ R/I, 
induced by d, satisfies for every r E R, m E R/I, d(rm) = d(r)m + rd(m). More 

generally, an endomorphism D of the additive group of a left R-module M is 

said to be d-derivation of M if D(rm)= d(r)m + rD(m) for every r E R, 

m ~ M. A submodule N of M is a D-submodule provided D(N) C N. Most of 

the results of this paper concern R-modules with d-derivations. We also need 

some auxiliary results on partially ordered sets. It is not surprising because the 

properties studied and their D-counterparts can be expressed as properties of 
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the lattice L (M) of submodules of M and the lattice Lo (M) of D-submodules of 

M. 

I. Preliminaries 

In this section we state some properties of a left R-module M with 

d-derivation D. Extending the product rule in the definition of D we obtain the 

Leibniz formula: 

(1.1) D"(rm)= ~ (7)  d"-'(r)D'(m ). 
j=0 

Let N be a D-submodule of M. Putt ing, /)(m + N) = D(m)+ N we obtain a 
d-derivation on M/N which is said to be induced by D. For every submodule N 

of M let 

N*= ~ D ' ( N ) ( N , = ( ' )  D- '(N))  , w h e r e D - i ( N ) = { x ~ M I D ' ( x ) E N } .  
j =o  i =o  

Clearly N* (N,)  is the smallest (largest) D-submodule of M containing N 

(contained in N). 

1.2. LEMMA. For every submodule N of M, the R-modules N + D(N)/N and 
N /N  tq D-~(N) are isomorphic. In particular L(N + D(N)/N) -~ 
L(N/N n D-t(N)). 

PROOF. It is easy to see that the map f: N---~ N+ D(N)/N given by f (n)= 
D(n)+ N is an epimorphism of R-modules and ker f  = N N D-~(N). 

The following proposition is straightforward. 

1.3. PROPOSITION. Given an integer v >= 1 the following conditions are 
equivalent: 

(i) for every rn EM, DV(m)EE;-,  ~, RD~(m); 
(ii) for every submodule N of Mr. N* = E~-~ ~) Dr(N); 

Ao -1 j 
(iii) for every submodule N of M, N ,  = ~=o D- (N). 

1.4. DEFINITION. We say that the d-derivation D has finite index if there 

exists an integer v => 1 satisfying Proposition 1.3. The index of D is defined as the 

smallest number v from 1.3. 

Throughout the paper D denotes a d-derivation of M of finite index, 

generally denoted by v. If (X, _<-) is a partially ordered set, then the interval 

{x E X I a <= x <= b} is written [a, b]x or [a, b] if the context is clear. 
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Let b,B:L(M).--~L(M) be defined by b(N)=NND- ' (N) ,  B ( N ) =  

N + D(N). Clearly b and B have the following properties: 

1.5. For every submodule N of M 

(i) b(N) C N C B(N), Bb(N) C N C_ bB(N); 
(ii) [b(N), N] ~ IN, B(N)]; 
(iii) N ,  = b°-I(N), N* = B°-'(N). 

1.6. If in addition N ,  = 0, then 

M ~ N ~ b(N) D b2(N) D . . .  D b°-'(N)=O 

and for every / = 1 , 2 , . . . , v - 1  

[bJ(N), bJ-t(N)] ~ [b'- '(N), abJ-~(N)] C [bJ-'(N), bJ-2(N)], 

where b°(N) = N and b-'(N) = B(N). 

Now we will prove a result analogous to Lemma 1.3 of [1]. 

1.7. LEMMA. There exists a submodule N of M maximal with respect to 
N ,  =0.  

PROOF. By Zorn's lemma it suffices to show that if {No I a E A} is a chain of 

submodules of M such that ( N ~ ) , = 0  for all a CA,  then (I,.JNa), =0.  If 

( I , . JN~),~0 then O~(Rm)*=~,~_~'~RDJ(m)CI,.JNa for some m~C.lN~. 
Since DJ(m)EI,.JN,,, one has DJ(m)EN~o, for some a ( j ) ~ A .  Choosing 

/3 = max a(j) ,  we obtain that 0 ~  (Rm)*C_ Na, a contradiction to (Na), =0 .  

2. Some results on partially ordered sets 

In this section we prove some general results about partially ordered sets. We 

will use them for examining the relation between the uniform dimension and the 

D-uniform dimension of factors of a module M. 

Let ~ be a class of partially ordered sets with 0 and 1, which is closed with 

respect to isomorphisms (of partially ordered sets). Moreover we assume that if 

X E ~, then for every x, y E X with x <= y, [x, y ] E ~. Now let f~ be a property of 

partially ordered sets. If a partially ordered set (X, = ) has property l), then we 

write X E 1). 

2.1. DEFINrnOr~. The property t / i s  said to be upper hereditary on ~ if 

satisfies the following three conditions: 

(i) i f X ~ Y a n d X E ~ , t h e n  Y E I ) ;  
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(ii) i fx,  y, z E X ~ X ( x = y = z )  and [x, y] E i~ then [x, z] ~ [l; 

(iii) if X U f~ then for every x-E X [0, x] E f~ or Ix, 1] E-fL 

2.2. EXAMPLE. Let d,/ be the class of all modular lattices with 0 and 1. The 

following properties are upper hereditary on d~: 

(a) L E I I  if and only if L is not Noetherian (L is not Artinian, L has infinite 

length). 

(b) L E ~q if and only if u. dim L = oo, where u. dim L denotes the uniform 

dimension of L. (For the basic properties of the uniform dimension of modular 
lattices we refer to [5].) 

2.3. PROl'OSmOrq. Let 1) be an upper hereditary property on the class 5( and let 

X ~ 5(. Suppose that there exist order preserving maps b, B: X ~ X such that for 

every x E X 

(i) b(x)<-_ x <= B ( x )  and Bb(x)  < _ x <= bB(x),  

(ii) [b(x), x] -~ [x, B(x)]. 

I[ for some Xo E X, [x0, 1] E f/, then for every integer k >= 0 there exists an element 

x E X s u c h  that [ bk (x ) , l ]E f /  or [B~(x) , l ]~ lq .  

The proof of this proposition requires some preliminary lemmas. 

2.4. LEMMA. If  k >_ l >->_0, then btB~b k = b k and BtbtBk = B k. 

PROOF. Let x E X. Since b and B are order preserving maps and for every 
y ~X,  Bb(y)<= y <= bB(y), we obtain 

b'B'bk(x)  = b H ( b B ( B H b k ( x ) ) )  > b H B ' - ' b k ( x )  > . . "  > b k (x). 

On the other hand 

b'BSbk(x) = b 'BH(Bb(bk- ' ( x ) ) )  < b ' B H b k - ' ( x )  <__... < b 'bk- ' (x)  = bE(x). 

Hence btB~b k = b k. The proof of the second equality is analogous. 

2.5. LEMMA. For every z ~ X and 1 < m < n, if [bmBn(z), b" - lB" ( z ) ]  E l l  

then [b '+lB"(z) ,  b~Bn(z)] EI'~. 

PROOF. The proof is by induction on n. Let n = 2  and let 

[bB2(z), B2(z)] Ef l .  By 2.4 we have 

[ ba~( z ), B 2 ( z ) ]  = [ bBe( z ), BbBe( z )] -~ [ b ~ B2( z ), ba2( z )], 

so [bZB2(z), bB2(z)] E f t .  

Suppose that the lemma is true for all ] < n .  Now, let m < n  and let 
[ b "Bn ( z ), b =-I Bn ( z )] E l~. Consider the chain 
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b"B"(z)<= Bb"B"(z)<-_ B"b'"B"(z)<= . . .  <= B " b " B " ( z )  = B"(z) .  

we obtain that Since b " - ' B "  (z)_-< B" (z), by upper hereditary, 

[b"B"  (z), B" (z)] E l). Hence for some j < m < n 

(*) [B 'b 'B"  (z ), B ' ' t b " B "  (z )] E l i .  

Choose j minimal satisfying (*). We claim that j =_6 1. Indeed, if ] = 2 then 

l i  ~ [ B 'b"B"  (z ), B '+ 'b 'B"  (z )] --~ [bB'b 'B"  (z ), B 'b"B"  (z )]. 

Hence for w = b "B" (z ), [bBJ(w ), B j (w)] E li. The induction assumption gives 

l) ~ [biB'(w),  b'-~ BJ ( w )] = [ b~a'b"B" ( z ), bS-~ BJb 'B"  ( z )]. 

Since biBJb '' = b" and bS-~BSb'Bn(z)<= BJb"'B"(z), we have 

[b"B"(z) ,  BSb"B"(z)] E l l .  This contradicts minimality of j and proves the 

clairh. Hence 0 = j _<--1. Let us observe that 

[ Bb"B"  (z ), B2b"B" (z )] ~ [bBb"B n (z ), Bb"B  n (z )] 

= [bmBn(z), Bb"Bn(z)]  ~ [bm+~B"(z), b 'B"(z ) ] .  

Therefore j = 0 and [b"÷tBn(z),  b 'B" ( z ) ]  E l). 

PROOF OF PROPOSITION 2.3. We proceed by induction, the case k = 0 being 
true from the assumption. Now let k =>0. We have two possibilities: 

[ b k ( x ) , l ] E l )  or [ B ~ ( x ) , l ] E l ) .  The second case reduces to the first one. 

Indeed, if [ B k ( x ) , I ] E I )  then [Bk(x) ,Bk÷~(x)]Ef l  or [Bk÷~(x) , I ]EIL We 

have [Bk(x) ,Bk÷~(x)]~[bBk(x) ,Bk(x)] ,  so if [Bk (x ) ,Bk÷~(x ) ]E l ) then  by 
Lemma 2.5 [bkBk(x), bk-~BE(x)] E l i  and by upper hereditary [bE(z), 1] E l ) ,  

for z = Bl'(x). 
Now let [b~(x), 1] E l i .  Consider the chain 

b~(x)<= Bbk(x)<= . . .  <-_ Bkbk(x)<= Bk+~bk(x)<=... <= 1. 

If [Bk+~bk(x), 1] E l i  then [BE+~(z), 1] E l) for z = bE(x). Hence we may assume 

that [B k+~ b k (X), 1] ~ li, SO that [b k (X), B k+~ b k (X)] E l i .  By upper hereditary 

there is j <= k minimal with respect to [BJbk(x), BJ+~bk(x)] E l i .  We claim that 

j <= 1. Indeed, if j -  2 then 

l) ~ [BSb E (x), B j÷~ b E (x)] -~ [bBJb E (x), BSb E (x)], 

so by Lemmas 2.5 and 2.4 l ) ~  [bJBSbE(x), bJ-~B~bk(x)] = [b~(x), bS-~BJbk(x)]. 
Applying the same argument as in the proof of Lemma 2.5 we obtain a 
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contradiction with minimality of j. Therefore 0 = j -< 1 and [b~+l(x), 1] ~ fL This 

ends the proof. 

As an immediate consequence of Proposition 2.3 and Example 2.2(b) we 

obtain the following 

2.6. COROLLARY. Let X be a modular lattice'with O, 1 and let Y be its subset. If  

there exist order preserving maps b, B: X - *  X and an integer n >-_ 1 such that for 
every x ~ X 

(i) b(x)<-x <=B(x) and Bb(x)<-_x <=bB(x), 
(ii) [b(x), x] = [x, B(x)], 

(iii) b"(x )E  Y and B " ( x ) E  Y, 
then for every x ~ X u. dim[x, 1] < oo if and only if u. dim[y, 1] < oo for every 

y E Y .  

3. Chain conditions and dimensions 

In this section we study relations between chain conditions and dimensions of 

M and their D-counterparts. By D-I(M) (D-u.dim(M), D-Gdim(M), D- 

K dim(M)) we denote the length (uniform, Gabriel, Krull dimensions, respec- 

tively) of M with respect to D-submodules. 
The statements (b) and (c) of the following theorem are related respectively to 

Theorem 2.1 of [2] and Lemma 1.4 of [1] and they will be proved in almost the 

same way. 

3.1. THEOREM. Let M be a left R-module with a d-derivation D of ]inite index 
V. Then 

(a) D-I(M) <- l(M)<= v . D-I(M); 
(b) M is Noetherian if and only if M is D-Noetherian ; 
(c) D-u.  dim(M) =< u. dim(M) =< v.  D-u.  dim(M); 
(d) for every submodule N of M u. dim M / N  < oo if and only if for every 

D-submodule K of M /)-u.  dim M / K  < 0% where E) is an induced by D 
d-derivation on M / K ; 

(e) M is Artinian if and only if M is D-Artinian. 

PROOF. (a) Clearly it suffices to consider the case when M is D-simple. By 

1.7 we can take a submodule N of M, maximal with respect to N ,  = 0. Since M 

has no proper D-submodules, M / N  is a simple module. By 1.6, for every 

i = 0 , 1 , . . . , v - 1 ,  the module b~(N)/b~*~(N) is simple or it is equal to zero. 

Hence l(M) <- v. 
(b) Suppose that M is D-Noetherian. Using Noetherian induction we can 
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assume that for every non-zero D-submodule X of M the module M/X is 

Noetherian. Now let N be a submodule of M maximal with respect to N ,  = 0. 

Let N ~  XI ~ X2 ~ ' "  C_ M be an ascending chain of submodules of M. Since 

N ~  Xl, 0 ~ (X1), C_ X1. By our assumption M/(XI), is Noetherian, so the chain 

Xl ~ X2 ~ ' - "  terminates. Therefore the module M/N is Noetherian and by 1.6 

so is the module M. 

The converse is clear. 

(c) Let D-u.  dim(M) = k < oo. By 1.6 it suffices to show that u. dim(M/N) <= 
k, where N is a submodule of M maximal with respect to N , = 0 .  Let 

NI, N2 . . . . .  N,, be submodules of N strictly containing N whose sum is direct 

modulo N. Clearly for every j = 1,2 . . . . .  m (Nj), ~ 0  and 

Therefore m <= k. 

(d) It is an immediate consequence of 2.6 and 3.1(c). 

(e) Assume that M is D-Artinian. We claim that for every submodule X 

of M there exists a submodule Y of M minimal over X. Obviously there 

exists a D-submodule K of M minimal over X ,  as a D-submodule. Clearly 

f)-l(K/X,) = 1, where /5 is the induced by D d-derivation of K/X, .  Since 

X,C_KfqX and 0 ~ K / K f q X ~ K + X / X ,  by 3.1(a), we obtain that 

l(K + X/X)<= v. This proves the claim. 
Now it is easy to see that for submodules XC_Z of M there exists a 

submodule Y C_ Z minimal over X. 

The above remarks and 3.1(d) imply that for every submodule X of M the 

socle Soc(M/X) is a finite direct sum of simple submodules of MIX and that 

Soc(M/X) is an essential submodule of M/X. 
Now let MID M2 _D... be a descending chain of submodules of M and let 

X = ~ = ~  Mn. Since Soc(M/X) is essential in M/X and it has finite length, the 

chain terminates. 

Now we will examine the relationship between Gabriel, G dim(M), and 

D-Gabriel, D-G dim(M), dimensions of M. For the definitions and the basic 

properties of this dimension we refer to [6]. 

3.2. THEOREM. G dim(M) = D-G dim(M) if either side exists. 

PROOF. We prove separately 

(a) if D-G dim(M) = a then G dim(M) _-__ a ; 

(b) if G dim(M) = a then D-G dim(M) _-__ or. 
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Suppose that (a) does not hold. Let a be the smallest ordinal number 

such that for some module M, D-G dim(M)= a and Gdim(M);~ a. Let T = 

E{N C_ M I G dim(N) =< a }. Clearly G dim(T) =< a and by 1.2, T = T*. Hence we 

can assume that T = 0. Obviously we can assume that M is a-D-simple. Let N 

be a submodule of M maximal with respect to N,  = 0. For every submodule X 

strictly containing N we have/5-G dim M / X ,  < a. Now minimality of a gives 

Gdim(M/X) < Gdim(M/X,)  < a. Therefore Gdim(M/N) <= a and, by 1.6, 

G dim(M) =< a, a contradiction. 

Now we prove (b). The proof is by induction on a. Let T be the largest 

D-submodule of M such that D-G dim(T) =< a. We claim that T = M. If not, we 

may assume that T = 0 and M ~  0. In this case, by the induction assumption and 

by 1.2, M contains no non-zero submodules X with G dim(X) < a. Now since 

G dim(M)= a, there exists an a-simple submodule N. 

Let us define the relation - (~o) on the lattice L(M) (Lo (M)) putting X - Y 

( X - o  Y) if and only if 

Gd im(X+ Y / X O  Y ) < a  (/5-Gdim(X + Y / X N  Y)< a). 

It is easy to check that - and - o  are congruence relations on L(M) and Lo (M) 
respectively. Now if X and Y are D-submodules of M, and G dim(X + Y / X  n 
Y) < a then by the induction assumption £)-Gdim(X + Y / X  n Y)< a. This 

shows that the restriction of - to Lo (M) is equal to - o .  Hence Lo (M)/~o can 

be treated as a sublattice of L ( M ) / ~ .  Obviously the congruence class [N] 

containing N is an atom in the quotient lattice L ( M ) / - .  As an immediate 

consequence of 1.2 we obtain that the interval [[0], [N*]]L(M~/- has a finite length. 

Hence also the interval [[0],[N*]]Lo(M)/-o has a finite length. Therefore 

Lo(M)/~o contains an atom [K]. This implies that for every non-zero D- 

submodule X of K, D-Gdim(X)<  a or D-Gdim(K/X)< a. Since T =0, 

D-G dim(X) ;~ a. This implies that K is a-D-simple, so D-G dim(K) = a. Using 

again the assumption that T = 0 we obtain a contradiction. 

The proof of Theorem is complete. 

Now we can prove the result on Krull dimension corresponding to 3.2. It 

generalizes 3.1(e). We use Gordon and Robson's result [3], which asserts that a 

module has Kruli dimension if and only if it has Gabriel dimension and all its 

factors have finite uniform dimension. 

3.3. THEOREM. K dim(M) = D-K dim(M) if either side exists. 

PROOF. Clearly it suffices to show that if D-K dim(M) = a then K dim(M) _-< 
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a. The quoted Gordon-Robson's result, 3.1(d) and 3.2 prove that Kdim(M) 

exists. By Corollary 4.2 of [4], M contains a largest submodule T with 

Kdim(T)-<_ a. Using 1.2 we obtain that T = T*. Now passing if necessary to the 

factor module M / T  we can assume that T = 0. Using the induction, we can also 

assume that M is a-D-critical. Now let N be a submodule of M maximal with 

respect to N .  =0. If X ~  N, then X ,  ~ 0  and by the induction assumption 

K d i m ( M / X )  < K d i m ( M / X . )  < a. Hence Kdim(M/N) < a. Applying 1.6 we 

obtain that K dim(M) < a, a contradiction. Therefore T = M and the proof is 

complete. 

We close this section with some remarks concerning radicals. Recall that the 

Jacobson radical J ( M )  of a module M is equal to the intersection of all maximal 

submodules. We define D-Jacobson radical J ° ( M )  of a module M with a 

d-derivation D as the intersection of all maximal D-submodules. As a conse- 

quence of 3.1(a) we obtain the following 

3.4. COROLLARY. I f  the d-derivation D has index v, then J ( R )  °-~ . J ( M ) C  

J°(M). 

PROOF. Let N be a maximal D-submodule of M. Obviously D - I ( M / N )  = 1 

and by 3.1(a) there exists a chain 

M = M,,D M, D . . . D Mn = N 

of submodules of M such that all factors M,/M,.~ are simple modules and n < v. 

Now a simple induction on j < n gives that J ( R y - ' .  J ( M ) C  Mj. In particular 
J ( R )  ~-'. J ( M )  C_ J ( R ) n - ' J ( M )  C_ Mn = N. Consequently J ( R )  v- ' '  J ( M )  C_ 

J ° ( M ) .  

The following example shows that in general the exponent v - 1 in 3.4 cannot 

be improved. 

3.5. EXAMPLE. Let T = Zp Ix] be the polynomial ring in the indeterminate x 

over the field Zp, and let I = (x) denote its augumentation ideal. The derivation 

on T defined by setting d ( x ) =  1 maps the ideal I" into itself; so d induces 

derivation d on T = T / I  p. Obviously d has index p, ja  (.~) = 0 and J('F) = H I  p. 

4. Clifford type relations 

The aim of this final section is, among other things, to study D-simple 

modules. 

We begin with two elementary lemmas. 
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4.1. LEMMA. Let  D be a derivation on a left R - m o d u l e  M. I f  for some r ~ R 

and  m ~ M,  0 = rm = r D ( m )  . . . . .  r D k - i ( m )  then d k - l ( r ) m  . . . . .  d ( r ) m  = 

rm = 0 and  rD k ( m )  = ( - 1)kd k (r)m.  

PROOF. We prove by induction on s that 

(*) d ~ ( r ) D ' ( m ) = O  f o r O < = s + l < = k - 1 .  

The case s = 0  is clear. Now let 0 _ - < s < k - 1  and let s + l + l _ - - - k - 1 .  The 

induction assumption gives that d S ( r ) D t ( m ) =  d ' ( r ) D ' + l ( m ) = 0 .  Hence 

0 = D ( d * ( r ) D ' ( m ) ) =  d'+'(r)D'(m). 

This proves (*). In particular (*) implies that dk-~(r)m . . . . .  d ( r ) m  = rm = O. 

Moreover  it gives that for every s = 0, 1 . . . . .  k -  1, 

0 = D ( d ~ ( r ) D k - S - ~ ( m ) ) =  d '+ ' ( r )Ok- '~+"(m)+ d ' ( r ) D k - ' ( m ) .  

Therefore  rD k ( m )  = - d ( r ) D k - ' ( m )  . . . . .  ( - 1)kd k (r)m.  

4.2. LEMMA. det V. = n + 1, where 

.... !7.! . ' . ! :  
\ o  o . . .  

PROOF. Consider the n × n matrix 

2 00 !) 
1 2 1 0 - . .  

W , =  0 1 2 1 . "  E M , ( Z ) .  
. . . . .  , . . . . .  

0 0 0 0 . . .  

It is clear that the determinant  is invariant under e lementary operations,  i.e., 

operations which add to a row of a matrix a linear combination of its rows. By 

induction on n we prove that using e lementary  operat ions we can pass f rom Vn 

to IV.. It is clear for n = 1. Now let n > 1. By induction we can pass f rom V, to 
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t m 
W n -  i 

.+1) (.+1) 
1 2 

1 

0 V¢.-i 

If wj denotes the j-th row of W'., then it is easy to check that 

(2,1,0 . . . . .  0 ) + ( n - l )  

and hence we can pass from V, to Wo. 

Therefore  det Vn = d e t  W, = 2 d e t  W~_~-det W,-2. Since det W~ = 2  and 

det W2 = 3, we obtain that det Vn = n + 1. 

4.3. PROPOSmON. Suppose that d is a derivation on R o[ Jinite index w and 

that w ! is invertible in R. Then for every le[t R-module M with d-derivation D and 

every essential submodule N of M, the submodule b(N) = N N D- ' (N)  is also 

essential in M. 

PROOF. Suppose that b(N) is not essential. Using essentiality of N we can 

choose x E N  such that b(N) N R x  = 0  and r E R  with 0 #  rS C_N, where 

S - -{x ,D(x)  . . . . .  DW(x)}. 

Let  k (0 N k N w) be minimal with respect to rD k ( x ) #  0. We claim that 

0 <  k < w. Indeed, if rx#O then rD(x)E N and D(rx)= d(r)x + rD(x )~  N. 
Hence rx E b (N) N Rx = 0, a contradiction. On the other hand if k = w then, by 

4.1 and 1.3, rDW(x)=(-1)~dW(r)x E2gj~-o~Rd~(r)x = 0  which is impossible. 

T h u s 0 < k < w  and 

0 = rx = rD(x) . . . . .  rD~-'(x). 

By Leibniz formula 1.1 we obtain 

O=Dk+,(rx)= dk+,(r)x + ~ k +1 dk+,_,(r)D,(x)+rDk+,(x). 
i=1  i 

Moreover  for s = 2 . . . . .  k we have 

-'(:/ 0 = D'(rDk-'÷'(x))= ~ d'-'(r)Dk-'÷'÷'(x)+ rDk+'(x). 
i =0  

Now putting x i = dk+l-~(r)DJ(x) (j = 1 . . . . .  k) we obtain 

j=t j x~ E N and J=, j - s xj ~ N, f o r s = l , . . . , k - 1 .  
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By 4.2 det Vk = k + 1 =< w is invertible in R. Hence for j - -  1 . . . . .  k, xj E N 
and in particular d k ( r )D(x)  E N. We have D(d k (r)x) = 

dk÷l(r)x + dk(r)D(x) E N and, by 4.1, 0 ~ d~(r)x E b(N) N Rx. This contradic- 

tion ends the proof. 

The above result clarifies the following 

4.4. COROLLARY. Under the assumption on d of 4.3 we have 

(a) for every essential left ideal I of R, the left ideal I ,  is also essential; 

(b) for every left R-module M with d-derivation D of .finite index and each 

essential submodule N of M, N ,  is also an essential submodule of M. 

As a final result we prove the following 

4.5. THEOREM. Let d be a derivation on R of finite index w with w! invertible 

in R and let D be a d-derivation of .finite index v on a left R-module M. 
(a) If M is D-simple, then M is a completely reducible module of length 

I(M) <= v. 
(b) J(M) C jo  (M). 

(c) If the ring R has no proper d-invariant left ideals then R is a simple Artinian 

ring. If in addition R is a commutative ring then R must be a .field. 

PROOF. (a) It is an immediate consequence of 4.4(b) and 3.1(a). 

(b) It follows from 4.5(a). 

(c) By (a) and (b) R is a semisimple Artinian ring. Hence, it suffices to show 

that R is a simple ring. Suppose that I is a non-zero ideal of R. Then there exists 

a central idempotent e E I  such that l = I e .  Obviously d ( I ) = d ( I e ) =  
d(I)e +Id (e )CI .  Therefore I =  R and R is a simple ring. 

The following example points out differences between properties of J(R)  and 

4.6. EXAMPLE. Let R = M2(Q) be the full 2 x 2 matrix ring over the field of 

rational numbers, and let d~ be the inner derivation on R determined by the 

matrix 

Clearly d3. = 0, so d. has index _-< 3. It is easy to see that 

X ,--f( ° y)lxy o/ 
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is the unique proper left da-ideal of R. Therefore I=Jao(R)~J(R)=O. 
Moreover I -~ = / .  
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